World Library  

QR link for Airborne Hydrogen Cyanide Measurements Using a Chemical Ionisation Mass Spectrometer for the Plume Identification of Biomass Burning Forest Fires : Volume 13, Issue 18 (16/09/2013)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Airborne Hydrogen Cyanide Measurements Using a Chemical Ionisation Mass Spectrometer for the Plume Identification of Biomass Burning Forest Fires : Volume 13, Issue 18 (16/09/2013)

By Le Breton, M.

Click here to view

Book Id: WPLBN0003989827
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Airborne Hydrogen Cyanide Measurements Using a Chemical Ionisation Mass Spectrometer for the Plume Identification of Biomass Burning Forest Fires : Volume 13, Issue 18 (16/09/2013)  
Author: Le Breton, M.
Volume: Vol. 13, Issue 18
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

O'shea, S. J., Lewis, A. C., Parrington, M., A. Mulle, J. B., R. Ashfol, M. N., Bacak, A.,...Batt, R. (2013). Airborne Hydrogen Cyanide Measurements Using a Chemical Ionisation Mass Spectrometer for the Plume Identification of Biomass Burning Forest Fires : Volume 13, Issue 18 (16/09/2013). Retrieved from http://community.worldlibrary.net/


Description
Description: The Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL, UK. A chemical ionisation mass spectrometer (CIMS) was developed for measuring hydrogen cyanide (HCN) from biomass burning events in Canada using I reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere.

A strong correlation between the HCN, carbon monoxide (CO) and acetonitrile (CH3CN) was observed, indicating the potential of HCN as a biomass burning (BB) marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR) of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011). The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N) yr−1.


Summary
Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

Excerpt
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, doi:10.5194/acp-11-4039-2011, 2011.; Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, doi:10.5194/acp-13-1141-2013, 2013.; Ambrose, J. L., Zhou, Y., Haase, K., Mayne, H. R., Talbot, R., and Sive, B. C.: A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere, Atmos. Meas. Tech., 5, 1229–1240, doi:10.5194/amt-5-1229-2012, 2012.; Amiro, B. D., Cantin, A., Flannigan, M. D., and de Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. For. Res., 39, 383–395, 2009.; Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, doi:10.1029/2000GB001382, 2001.; Archibald, A. T., Cooke, M. C., Utembe, S. R., Shallcross, D. E., Derwent, R. G., and Jenkin, M. E.: Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene, Atmos. Chem. Phys., 10, 8097–8118, doi:10.5194/acp-10-8097-2010, 2010.; Bange, H. W. and Williams, J.: New directions: Acetonitrile in atmospheric and biogeochemical cycles, Atmos. Environ., 34, 4959–4960, 2000.; Becidan, M., Skreiberg, Ø., and Hustad, J. E.: NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues, Energy and Fuels, 21, 1173–1180, 2007.; Bertschi, I. T., Yokelson, R. J., Ward, D. E., Christian, T. J., and Hao, W. M.: Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy, J. Geophys. Res., 08, 8469, doi:10.1029/2003JD004402, 2003.; Boldi, R. A.: A Model of the Ion Chemistry of Electrified Convection. Ph.D. Thesis MIT, USA, http://dspace.mit.edu/handle/1721.1/51502 (last access: September 2012), 1993.; Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461–483, 2002.; Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J., Hao, W. M., Shirai, T., and Blake, D. R.: Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD, J. Geophys.Res., 109, D02311, doi:10.1029/2003JD003874, 2004.; Christian, T. J., Yokelson, R. J., Cárdenas, B., Molina, L. T., Engling, G., and Hsu, S.-C.: Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico, Atmos. Chem. Phys., 10, 565–584, doi:10.5194/acp-10-565-2010, 2010.; Cicerone, R. J. and Zellner, R.: The atmospheric chemistry of hydrogen cyanide (HCN), J. Geophys. Res., 88

 

Click To View

Additional Books


  • Evaluation of Near-tropopause Ozone Dist... (by )
  • Cloud Condensation Nucleus (Ccn) Behavio... (by )
  • Deuterium Excess in Atmospheric Water Va... (by )
  • Bromine and Iodine Chemistry in a Global... (by )
  • Dynamical Analysis of Sea-breeze Hodogra... (by )
  • Observations of the Mesospheric Semi-ann... (by )
  • An Attempt at Estimating Paris Area Co2 ... (by )
  • Carbon Monoxide, Methane and Carbon Diox... (by )
  • Validation of Envisat/Sciamachy Columnar... (by )
  • Mercury Vapor Air–surface Exchange Measu... (by )
  • Estimating Trajectory Uncertainties Due ... (by )
  • The Eyjafjöll Explosive Volcanic Eruptio... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.